A parsimonious description of motoneuron dendritic morphology using computer simulation.

نویسندگان

  • R E Burke
  • W B Marks
  • B Ulfhake
چکیده

Most quantitative descriptions of neuronal dendrite morphology involve tabulations of measurements and correlations among them. The present work is an attempt to extract from such data a parsimonious set of parameters that are sufficient to describe the quantitative features of individual and pooled dendrites, including their statistical variability. A relatively simple stochastic (Monte Carlo) model was devised to simulate branching dendritic trees. The necessary parameters were then derived directly from measurements of 64 completely reconstructed dendrites belonging to six gastrocnemius alpha-motoneurons, labeled by intracellular injection of HRP. Comparison of actual and simulated dendrites was used to guide the process of parameter extraction. The model included only two processes, one to generate individual branches given their starting diameters and the second to select starting diameters for the daughter branches produced at dichotomous branching points. The stochastic process for branch generation was controlled by probability functions for branching (Pbr) and for terminating (Ptrm), together with a constant rate of branch taper. All model parameters were fixed by motoneuron measurements except for branch taper rate, which was allowed to vary within limits consistent with observed taper rates in order to generate the appropriate total number of branches. The simplest model (model 1), in which Pbr and Ptrm depended only on local branch diameter, produced simulated dendrites that fit many, but not all, characteristics of actual motoneuron dendrites. Two additional properties produced significant improvements in the fit: (1) a small but significant dependence of daughter diameters on the normalized starting diameter of the parent branch, and (2) a dependence of Pbr and Ptrm on distance from the soma as well as on local branch diameter. The process of developing this model revealed unsuspected relations in the original data that suggest the existence of fundamental mechanisms for morphological control. The final model succinctly describes a large amount of data and will enable quantitative comparisons between the dendritic structures of different types of neurons, regardless of their relative sizes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Simulation of Dendritic Cav1.3 Channels in Cat Lumbar Motoneurons: Spatial

We used computer simulations to study the dendritic spatial distribution of low voltageactivated L-type calcium (Cav1.3 type) channels, which mediate hysteretic persistent inward current (PIC) in spinal motoneurons. This study was prompted by the growing experimental evidence of the functional interactions between synaptic inputs and active conductances over the motoneuron dendritic tree. A com...

متن کامل

Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution.

We used computer simulations to study the dendritic spatial distribution of low voltage-activated L-type calcium (Ca(V)1.3 type) channels, which mediate hysteretic persistent inward current (PIC) in spinal motoneurons. This study was prompted by the growing experimental evidence of the functional interactions between synaptic inputs and active conductances over the motoneuron dendritic tree. A ...

متن کامل

Effects of congenital hypothyroidism on the morphology of trigeminal motoneuron assessed by the Golgi staining method in rats

Introduction: Appropriate thyroid hormone (TH) levels are essential during the critical period of brain development, which is associated with the growth of axons and dendrites and synapse formation. In rats, oral motor circuits begin to reach to their adult pattern around 3 weeks after birth, the period in which alteration from sucking to biting and chewing occurs (weaning time). Trigeminal ...

متن کامل

Electrophysiological Abnormalities in SOD1 Transgenic Models in Amyotrophic Lateral Sclerosis: The Commonalities and Differences

Since its first description in 1874 by Charcot, the hallmark feature of ALS is the progressive degeneration of upper and lower motoneurons (Charcot, 1874). In the spinal cord, motoneuron degeneration starts long before symptom onset and advances in a size-related fashion, in which large-size alpha-motoneurons degenerate first followed by small-size alpha-motoneurons (Pun et al., 2006; Hegedus e...

متن کامل

Neuroprotective effects of testosterone on dendritic morphology following partial motoneuron depletion: efficacy in female rats.

Motoneuron loss is a significant medical problem, capable of causing severe movement disorders and even death. We have previously demonstrated that partial depletion of motoneurons induces dendritic atrophy in remaining motoneurons, with a concomitant reduction in motor activation. Treatment of male rats with testosterone attenuates the regressive changes following partial motoneuron depletion....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 1992